Capnellenes from the Formosan Soft Coral Capnella imbricata

Chin-Hsiang Chang,[†] Zhi-Hong Wen,^{†,‡} Shang-Kwei Wang,[§] and Chang-Yih Duh*,^{†,‡}

Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, Center of Asia-Pacific Marine Researches, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, and Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China

Received October 30, 2007

Three anti-inflammatory sesquiterpenes, $\Delta^{9(12)}$ -capnellene- 8β ,10 α -diol (1), 8α -acetoxy- $\Delta^{9(12)}$ -capnellene-10 α -ol (2), and $\Delta^{9(12)}$ -capnellene-10 α -ol-8-one (3), five new sesquiterpenes, $\Delta^{9(12)}$ -capnellene- 8β ,15-diol (4), $\Delta^{9(12)}$ -capnellene- 8β ,10 α ,13-triol (5), $\Delta^{9(10)}$ -capnellene-12-ol-8-one (6), 8β ,10 α -diacetoxy- $\Delta^{9(12)}$ -capnellene (7), and 8β -acetoxy- $\Delta^{9(12)}$ -capnellene (8), and a known sesquiterpene, $\Delta^{9(12)}$ -capnellene- 8β -ol (9), were isolated from the acetone/methylene chloride extracts of the Formosan soft coral *Capnella imbricata*. The structures of these compounds were elucidated by extensive spectroscopic analysis.

Soft corals of the genus *Capnella* are rich sources of sesquiterpenes with the capnellane skeleton¹⁻⁶ and are reported to also contain precapnellane sesquiterpenes,⁷ xenicane diterpenes,⁸ and steroids.^{8,9} As part of our search for bioactive substances from marine resources, three anti-inflammatory sesquiterpenes, $\Delta^{9(12)}$ -capnellene- 8β ,10 α -diol (1),¹ 8 α -acetoxy- $\Delta^{9(12)}$ -capnellene- 10α -ol (2),⁵ and $\Delta^{9(12)}$ -capnellene- 10α -ol-8-one (3),³ five new sesquiterpenes, $\Delta^{9(12)}$ -capnellene- 8β ,15-diol (4), $\Delta^{9(12)}$ -capnellene- 8β ,10 α -diacetoxy- $\Delta^{9(12)}$ -capnellene (5), $\Delta^{9(10)}$ -capnellene-12-ol-8-one (6), 8β ,10 α -diacetoxy- $\Delta^{9(12)}$ -capnellene (7), and 8β -acetoxy- $\Delta^{9(12)}$ -capnellene (8), and a known sesquiterpene, $\Delta^{9(12)}$ -capnellene- 8β -ol (9),⁶ were isolated from the Formosan soft coral *Capnella imbricata* (Quoy and Gaimard, 1983) (family Nephtheidae).

* To whom correspondence should be addressed. Tel: 886-7-525-2000, ext. 5036. Fax: 886-7-525-5020. E-mail: yihduh@mail.nsysu.edu.tw.

[†] National Sun Yat-sen University.

Center of Asia-Pacific Marine Researches.

[§] Kaohsiung Medical University.

Table 1. ¹³C NMR Data for Compounds 4-8

	4 ^{<i>a</i>}	5 ^{<i>a</i>}	6 ^b	7 ^a	8 ^a
1	47.2	44.5	44.7	44.3	43.9
2	36.2	43.9	42.3	43.6	41.7
3	39.8	37.5	40.4	41.7	40.9
4	53.6	55.5	55.2	50.2	53.6
5	48.8	41.5	46.2	45.3	48.4
6	41.6	49.5	44.1	48.1	42.6
7	39.7	38.2	42.2	35.6	36.3
8	75.5	74.2	211.3	75.4	76.2
9	160.2	164.3	135.5	151.5	156.3
10	49.1	90.6	186.7	95.7	49.5
11	65.2	62.5	61.9	65.3	67.7
12	105.9	111.8	56.8	116.4	108.6
13	31.6	71.4	30.1	31.9	31.6
14	25.7	30.7	31.1	31.4	30.2
15	69.9	23.8	26.0	24.4	25.5
OAc-8				170.9 21.3	171.9 21.4
OAc-10				169.6 22.0	

^{*a*} Recorded at 75 MHz in CDCl₃. ^{*b*} Recorded at 125 MHz in CDCl₃. The values are in ppm downfield from TMS and assignments were made by DEPT, COSY, HMQC, and HMBC experiments.

Results and Discussion

The bodies of the soft coral *C. imbricata*, collected at Green Island off Taiwan, were freeze-dried and then extracted with CH₂Cl₂/acetone. After removal of solvent *in vacuo*, the residue was chromatographed over a column containing silica gel 60 using *n*-hexane/EtOAc and EtOAc/MeOH mixtures as eluting solvents. Compounds **1–9** were further purified by RP-18 HPLC. A combination of DEPT and ¹³C NMR spectra of **1–3** and **9** revealed that these compounds were similar to capnellane alcohols. The spectroscopic data obtained were consistent with a tricyclic skeleton which contained a *gem* dimethyl, a tertiary methyl, and an exocyclic methylene group. Through comparison of the spectroscopic and physical data with previously reported capnellenes, compounds **1–3** and **9** were identified as $\Delta^{9(12)}$ -capnellene- 8β , 10α -diol, ¹ 8α -acetoxy- $\Delta^{9(12)}$ -capnellene- 10α -ol, ⁵ $\Delta^{9(12)}$ -capnellene- 10α -ol-8-one, ³ and $\Delta^{9(12)}$ -capnellene- 8β -ol, ⁶ respectively.

 $\Delta^{9(12)}$ -Capnellene-8 β ,15-diol (4) was assigned a molecular formula of C₁₅H₂₄O₂ by HRESIMS, ¹³C NMR, and DEPT, indicating the presence of four degrees of unsaturation. The carbon resonances (Table 1) at $\delta_{\rm C}$ 160.2 (qC) and 105.9 (CH₂) in the ¹³C NMR and DEPT spectra indicatd the presence of an exo-methylene group. In addition, the presence of two oxygenated carbons was inferred from the carbon signals at $\delta_{\rm C}$ 69.9 (CH₂) and 75.5 (CH). Four methylene groups were deduced from DEPT signals at $\delta_{\rm C}$ 36.2, 39.7, 39.8, and 48.8, three methine signals at $\delta_{\rm C}$ 41.6, 49.1,

10.1021/np0706116 CCC: \$40.75 © 2008 American Chemical Society and American Society of Pharmacognosy Published on Web 02/27/2008

Table 2. ¹H NMR Data for Compounds 4–8

	4^a	5 ^{<i>a</i>}	6 ^b	7 ^a	8 ^a
2	1.41 m 1.58 m	1.46 m	1.56 m 1.66 m	1.45 m	1.44 m
3	1.42 m	1.69 m	1.78 m	1.54 m 1.64 m	1.53 m
5	1.49 m	1.60 m	1.03 dd (4.5, 12.3)	1.26 dd (9.5, 13.8)	1.45 m
	$1.80 \text{ dd} (8.1, 12.8)^c$	1.88 dd (10.1, 14.2)	2.09 dd (8.0, 12.3)	1.83 dd (9.5, 13.8)	1.77 m
6	2.43 m	2.67 m	3.02 m	2.77 m	2.48 m
7	1.39 m	1.59 m	2.05 dd (2.0, 18.4)	1.47 m	1.54 m
	2.25 m	2.28 m	2.64 dd (6.5, 18.4)	2.51 m	2.25 m
8	4.51 t(5.2)	4.78 m		5.72 m	5.53 t (3.4)
10	2.86 m				2.71 m
11	1.89 d (3.2)	2.02 s	2.47 s	2.34 s	1.78 m
12	5.00 s	5.41 s	4.32 dd (1.7, 13.4)	5.45 d (2.2)	4.99 s
	5.14 s	5.43 s	4.37 dd (1.7, 13.4)	5.51 d (2.2)	5.08 s
13	1.23 s	3.35 m	1.24 s	1.09 s	1.19 s
14	1.15 s	1.21 s	1.21 s	1.11 s	1.06 s
15	3.48 d (10.8) 3.58 d (10.8)	1.29 s	0.87 s	1.12 s	0.98 s
	3.58 d (10.8)				
OAc-8				2.07 s	2.09 s
OAc-10				1.95 s	

^{*a*} Recorded at 300 MHz in CDCl₃. ^{*b*} Recorded at 500 MHz in CDCl₃. The values are ppm downfield from TMS, and assignments were made by COSY, HMQC, and HMBC experiments. ^{*c*} J values (in Hz) in parentheses.

Figure 1. COSY and HMBC correlations of compounds 4 and 6.

Figure 2. Selected NOESY correlations of compounds 4 and 6.

and 65.2, two quarternary carbon signals at $\delta_{\rm C}$ 47.2 and 53.6, and two methyl signals at $\delta_{\rm C}$ 25.7 and 31.6. The ¹H NMR spectra (Table 2) confirmed the presence of an exo double bond by the fact that two signals were observed at $\delta_{\rm H}$ 5.00 (s) and 5.14 (s). One oxygenated methine at $\delta_{\rm H}$ 4.51 (t, 5.2) and one oxygenated methylene at $\delta_{\rm H}$ 3.48 (d, J = 10.8 Hz) and 3.58 (d, J = 10.8 Hz) were also observed. In addition, two singlet methyl signals were also observed at $\delta_{\rm H}$ 1.15 and 1.23. These NMR data were analogous to those of 9 except that a tertiary methyl was oxygenated to a primary alcohol ($\delta_{\rm H}$ 3.48, 3.58 and $\delta_{\rm C}$ 69.9).⁶ The positioning of the primary hydroxyl group at C-15 was suggested by HMBC correlations (Figure 1) from H2-15 to C-1/C-2/C-11/C-14 and NOESY correlations from H2-15 to H-6/H-10. In order to determine the relative stereochemistry of 4, a NOESY experiment was performed. These data are summarized in Figure 2, from which it can be seen that there are cis ring junctions at C4/C11 and C6/ C10. The NOE correlations from H-11 to H-7 β /H-12/Me-13/Me-14 confirmed these protons are on the same face of the molecule. In addition, further correlations from H-10 to H₂-15/H-6, from H-6 to H_2 -15, from H-5 α to H_2 -15, and from H_2 -15 to H-3 α indicated that all of these must be on the opposite face of the molecule from H-11. This stereochemistry is identical to that found previously in other capnellenes. $^{\rm 1-6}$

 $\Delta^{9(12)}$ -Capnellene-8 β ,10 α ,13-triol (5) had a molecular formula of C₁₅H₂₄O₃ as determined by HRESIMS and ¹³C NMR data. Its ¹³C and DEPT NMR spectra showed the presence of 15 carbon atoms, two sp³ quaternary, one oxygenated sp³ quaternary, one sp² quaternary, two methines, one oxygenated methine, four sp³ methylenes, one oxygenated sp³ methylene, one sp² methylene, and two methyls. These NMR data were similar to those of 1 except that hydroxylation of one of the tertiary methyl groups must have occurred (AB system centered at 3.35 ppm). This was further supported by the ¹³C NMR spectrum of 5, wherein one of the three tertiary methyl group signals of the capnellane skeleton was lacking and replaced by a methylene at 71.4 ppm. The presence of the primary hydroxyl at C-13 was indicated by HMBC correlations from H₂-13 to C-3/C-4/C-5/C-11. The NOE correlations from H-11 to H-7 β /H-12/Me-13/Me-14 confirmed these protons were on the same face of the molecule. In addition, further correlations from H-6 to Me-15, from H-5 α to Me-15, and from Me-15 to H-3 α indicated that all these must be on the opposite face of the molecule from H-11.

 $\Delta^{9(10)}\mbox{-}Capnellene-12\mbox{-}ol-8\mbox{-}one$ (6) proved to have a molecular formula of C₁₅H₂₂O₂ as indicated by HRESIMS and ¹³C NMR data. The IR spectrum of 6 showed an absorption due to hydroxyl (3500 cm⁻¹) and α , β -unsaturated carbonyl (1708 cm⁻¹) functionalities. ¹³C and DEPT NMR spectra exhibited 15 carbon atoms, two sp³ quaternary, three sp² quaternary, two methines, four sp³ methylenes, one oxygenated sp³ methylene, and three methyls. These NMR data resembled those of **3** except that an α -exo double bond and a tertiary hydroxyl were replaced by a tetrasubstituted enone [$\delta_{\rm C}$ 211.3 (qC), 135.5 (qC), and 186.7 (qC)] with a hydroxymethyl [$\delta_{\rm C}$ 56.8 (CH₂), $\delta_{\rm H}$ 4.32 d, 4.35 d] at the α -position.³ This was supported by HMBC correlations from H_2 -12 to C-8/C-9/C-10, from H-11 to C-9/C-10, and from H-7 to C-8/C-9, and from COSY correlations (Figure 1). The NOE correlations (Figure 2) from H-11 to H-7 β /H₂-12/Me-13/Me-14 confirmed these protons were on the same face of the molecule. In addition, NOE correlations from H-6 to H-5a, from H-5 α to Me-15, and from Me-15 to H-3 α indicated that all these must be on the opposite face of the molecule from H-11.

 8β ,10 α -Diacetoxy- $\Delta^{9(12)}$ -capnellene (7), isolated as a diacetate of **1**, was found to have a molecular formula of C₁₉H₂₈O₄ by HRESIMS and ¹³C NMR data. The IR spectrum of **7** showed absorption due to an acetate ester (1739 cm⁻¹). The NMR data indicated that it had the same carbon skeleton as **1**,¹ but had a further four carbon atoms, two quaternary and two primary, giving an attached proton formula of C₁₉H₂₈. The ¹H NMR spectrum showed

Capnellenes from the Soft Coral Capnella imbricata

the presence of two acetate methyls at δ 1.95 and 2.07, and the presence of two acetate moieties were inferred from the carbon signals at $\delta_{\rm C}$ 170.9 (qC), 21.3 (CH₃), 169.6 (qC), and 22.0 (CH₃). HMBC correlations from H₂-12 to C-8/C-9/C-10, from H-6 to C-8/ C-10, and from H-11 to C-1/C-9/C-10/C-14/C-15 helped ascertain the positions of the acetoxyls at C-8 and C-10. The relative stereochemistry of 7, which was identical to that of 1, was determined by a NOESY experiment.

 8β -Acetoxy- $\Delta^{9(12)}$ -capnellene (8) was isolated as a monoacetate of 9. High-resolution mass spectrometry gave a molecular formula of C₁₇H₂₆O₂. The ¹H NMR spectrum showed the presence of an acetate methyl at δ 2.09, and the presence of an acetate moiety was confirmed from the ¹³C NMR data. The location of the acetoxyl group was assigned at C-8 by HMBC correlations from H₂-12 to C-8/C-9/C-10 and by COSY correlations from H-7 to H-8/H-6 and from H-6 to H-10.

The anti-inflammatory activities of compounds 1–9 were tested using LPS-stimulated cells. Stimulation of RAW 264.7 cell with LPS resulted in up-regulation of the pro-inflammatory iNOS and COX-2 proteins. Compounds 1-3 at concentrations of 10 μ M significantly reduced the levels of the iNOS protein (1.2 \pm 0.1, 54.4 ± 12.0 , and 34.8 ± 10.2 , respectively) compared with control cells stimulated with LPS. Compounds 1 and 2 significantly reduced the levels of the COX-2 protein (24.8 \pm 7.5 and 62.9 \pm 13.7, respectively) at a concentration of 10 μ M compared with control cells stimulated with LPS. At the same concentrations, the other isolated capnellenes did not inhibit iNOS and COX-2 protein expression.

Experimental Section

General Experimental Procedures. Optical rotations were determined on a JASCO P1020 polarimeter. UV spectra were obtained on a Hitachi U-3210 spectrophotometer, and IR spectra were recorded on a JASCO FT/IR-4100 spectrophotometer. The NMR spectra were recorded on a Bruker Avance 300 NMR spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C or on a Varian Unity INOVA 500 FT-NMR at 500 MHz for ¹H and 125 MHz for ¹³C, respectively, using TMS as internal standard. Chemical shifts are given in δ (ppm) and coupling constants in Hz. ESIMS were recorded on a Bruker APEX II mass spectrometer. EIMS were obtained with a JEOL JMSSX/SX 102A mass spectrometer at 70 eV. Si gel 60 (Merck, 230-400 mesh) was used for column chromatography; precoated Si gel plates (Merck, Kieselgel 60 F254, 0.25 mm) were used for TLC analysis. High-performance liquid chromatography (HPLC) was performed on a Hitachi L-7420 UV detector L-7100 pump apparatus equipped with a Merck Hibar Lichrospher RP-18 column (250 \times 25 mm, 5 μ m).

Animal Material. The soft coral C. imbricata was collected at Green Island off Taiwan. A voucher specimen, NSUGN-075, was deposited in the Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan.

Extraction and Isolation. The bodies of the soft coral C. imbricata were freeze-dried to give 0.3 kg of a solid, which was extracted with CH₂Cl₂/acetone (2.0 L \times 3). After removal of solvent in vacuo, the residue (15 g) was chromatographed over a column containing silica gel 60 using n-hexane/EtOAc and EtOAc/MeOH mixtures as eluting solvents. Elution with n-hexane/EtOAc (98:2) gave fractions containing 8, that with *n*-hexane/EtOAc (88:12) gave fractions containing 9, that with n-hexane/EtOAc (82:18) gave fractions containing 1, 3, 5, 6, and 7, and that with MeOH/EtOAc (60:40) gave fractions containing 2 and 4. Compounds 1 (200 mg), 3 (15 mg), 5 (3.0 mg), 6 (3.0 mg), and 7 (2.0 mg) were further purified by passage over a RP-18 HPLC column, using MeOH/H₂O (80:20) as the solvent system. Compounds 2 (25 mg) and 4 (15.5 mg) were further purified by RP-18 HPLC using MeOH/H₂O (75:25) as the solvent system. Compounds 8 (2.0 mg) and 9 (56 mg) were further purified by RP-18 HPLC using MeOH/H₂O (88:12) as the solvent system.

Δ⁹⁽¹²⁾-Capnellene-8β,15-diol (4): $[α]_D^{22}$ +56.4 (*c* 0.1, MeOH); IR v_{max} 3416, 907 cm⁻¹; ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRESIMS m/z 259.1673 (calcd for C15H24O2Na 259.1674).

Δ⁹⁽¹²⁾-Capnellene-8 β ,10α,13-triol (5): [α]_D²² +29.6 (*c* 0.1, MeOH); IR ν_{max} 3364, 910 cm⁻¹; ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRESIMS m/z 275.1625 (calcd for C15H24O3Na 275.1623)

Δ⁹⁽¹⁰⁾-**Capnellene-12-ol-8-one** (6): $[α]_D^{22}$ +35.9 (*c* 0.1, MeOH); UV $\nu_{\rm max}$ (MeOH) nm (log ϵ) 239.0 (3.75); IR $\nu_{\rm max}$ 3500, 1708 cm⁻¹; ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRESIMS m/z 285.3643 (calcd for $C_{15}H_{22}ONa$ 285.3643).

8β,10α-Diacetoxy- $\Delta^{9(12)}$ -capnellene (7): [α]_D²² +86.2 (*c* 0.1, MeOH); IR ν_{max} 1739, 917 cm⁻¹, ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRESIMS *m/z* 343.1883 (calcd for C₁₉H₂₈O₄Na 343.1885).

8β-Acetoxy-Δ⁹⁽¹²⁾-capnellene (8): $[\alpha]_D^{22}$ +25.9 (*c* 0.1, MeOH); IR v_{max} 1739, 917 cm⁻¹; ¹H NMR, see Table 2; ¹³C NMR, see Table 1; HRESIMS *m*/*z* 285.3643 (calcd for C₁₇H₂₆O₂Na 285.3645).

In Vitro Anti-inflammatory Assay. The anti-inflammatory assay was modified from Ho et al.¹⁰ and Park et al.¹¹ Murine RAW 264.7 macrophages were obtained from the American Type Culture Collection (ATCC, No. TIB-71). The cells were activated by incubation in medium containing Escherichia coli LPS (0.01 µg/mL; Sigma) for 16 h in the presence or absence of various compounds. Then, cells were washed with ice-cold PBS, lysed in ice cold lysis buffer, and then centrifuged at 20000g for 30 min at 4 °C. The supernatant was decanted from the pellet and retained for Western blot analysis. Protein concentrations were determined by the DC protein assay kit (Bio-Rad) modified by the method of Lowry et al.¹² Samples containing equal quantities of protein were subjected to SDS-polyacrylamide gel electrophoresis, and the separated proteins were electrophoretically transferred to polyvinylidene difluoride membranes (PVDF; Immobilon-P, Millipore, 0.45 μ m pore size). The resultant PVDF membranes were incubated with blocking solution and incubated for 180 min with antibody against inducible nitric oxide synthase (iNOS; 1:1000 dilution; Transduction Laboratories) and cyclooxygenase-2 (COX-2; 1:1000 dilution; Cayman Chemical). The blots were detected using ECL detection reagents (Perkin-Elmer, Western Blot Chemiluminescence Reagent Plus) according to the manufacturer's instructions.

Acknowledgment. Financial support was provided by the Ministry of Education (95C030313) and National Science Council of Taiwan (NSC 96-2320-B-110-MY3) awarded to C.-Y.D. We thank C. F. Dai, Institute of Oceanography, National Taiwan University, for the identification of the soft coral.

References and Notes

- (1) Sheikh, Y. M.; Singy, G.; Kaisin, M.; Eggert, H.; Djerassi, C.; Tursch, B.; Daloze, D.; Braekman, J. C. Tetrahedron 1976, 32, 1171-1178.
- Sheikh, Y. M.; Djerassi, C.; Braekman, J. C.; Daloze, D.; Kaisin, M.;
- Tursch, B.; Karlsson, R. *Tetrahedron* 1977, 2115–2117.
 (3) Kaisin, M.; Sheikh, Y. M.; Durham, L. J.; Djerassi, C. *Tetrahedron* Lett. 1974, 2239-2242.
- (4) Ayanoglu, E.; Gebreyesus, T.; Beechan, C. N.; Djerassi, C.; Kaisin, M. Tetrahedron Lett. 1978, 1671-1674.
- (5) Kaisin, M.; Braekman, J. C.; Daloze, D.; Tursch, B. Tetrahedron 1985, 41, 1067-1072.
- (6) Morris, L. A.; Jaspars, M.; Adamson, K.; Woods, S.; Wallace, H. M. Tetrahedron 1998, 54, 12953-12958.
- Ayanoglu, E.; Gebreyesus, T.; Beechan, C. M.; Djerassi, C. Tetra-(7)hedron 1979, 35, 1035-1039.
- (8) Hooper, G. J.; Davies-Coleman, M. T. Tetrahedron 1995, 51, 9973-9984.
- (9) Wright, A. D.; Goclik, E.; König, G. M. J. Nat. Prod. 2003, 66, 305-307.
- (10) Ho, F. M.; Lai, C. C.; Huang, L. J.; Kuo, T. C.; Chao, C. M.; Lin, W. W. Br. J. Pharmacol. 2004, 141, 1037-1047.
- (11) Park, E. K.; Shin, Y. W.; Lee, H. U.; Kim, S. S.; Lee, Y. C.; Lee, B. Y.; Kim, D. H. Biol. Pharm. Bull. 2005, 28, 652-656.
- (12) Lowry, D. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265-275.

NP0706116